skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nazaretski, Evgeny"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The ever-increasing brightness of synchrotron radiation sources demands improved X-ray optics to utilize their capability for imaging and probing biological cells, nano-devices and functional matter on the nanometre scale with chemical sensitivity. Hard X-rays are ideal for high-resolution imaging and spectroscopic applications owing to their short wavelength, high penetrating power and chemical sensitivity. The penetrating power that makes X-rays useful for imaging also makes focusing them technologically challenging. Recent developments in layer deposition techniques have enabled the fabrication of a series of highly focusing X-ray lenses, known as wedged multi-layer Laue lenses. Improvements to the lens design and fabrication technique demand an accurate, robust,in situand at-wavelength characterization method. To this end, a modified form of the speckle tracking wavefront metrology method has been developed. The ptychographic X-ray speckle tracking method is capable of operating with highly divergent wavefields. A useful by-product of this method is that it also provides high-resolution and aberration-free projection images of extended specimens. Three separate experiments using this method are reported, where the ray path angles have been resolved to within 4 nrad with an imaging resolution of 45 nm (full period). This method does not require a high degree of coherence, making it suitable for laboratory-based X-ray sources. Likewise, it is robust to errors in the registered sample positions, making it suitable for X-ray free-electron laser facilities, where beam-pointing fluctuations can be problematic for wavefront metrology. 
    more » « less
  2. Bicontinuous-nanostructured materials with a three-dimensionally (3D) interconnected morphology offer unique properties and potential applications in catalysis, biomedical sensing and energy storage. The new approach of solid-state interfacial dealloying (SSID) opens a route for fabricating bi-continuous metal–metal composites and porous metals at nano-/meso-scales via a self-organizing process driven by minimizing the system's free energy. Integrating SSID and thin film processing fully can open up a wide range of technological opportunities in designing novel functional materials; to-date, no experimental evidence has shown that 3D bi-continuous films can be formed with SSID, owing to the complexity of the kinetic mechanisms in thin film geometry and at nano-scales, despite the simple processing strategy in SSID. Here, we demonstrate that a fully-interconnected 3D bi-continuous structure can be achieved by this new approach, thin-film-SSID, using Fe–Ni film dealloyed by Mg film. The formation of a Fe–Mg x Ni bi-continuous 3D nano-structure was visualized and characterized via a multi-scale, multi-modal approach, combining electron transmission microscopy with synchrotron X-ray fluorescence nano-tomography and absorption spectroscopy. Phenomena involved with structural formation are discussed. These include surface dewetting, nano-size void formation among metallic ligaments, and interaction with a substrate. This work sheds light on the mechanisms of the SSID process, and sets a path for manufacturing of thin-film materials for future nano-structured metallic materials. 
    more » « less